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1. TEM: 4D-STEM

• Scanned electron probe
• Optics dictates a need to balance real- vs. 

reciprocal-space resolutions
• Real- & reciprocal-spaces, collected 

simultaneously à four dimensions
• Comparison of detection between 4D-

STEM and traditional dark-field imaging
• Data sets are large (10’s to 100’s of GBs)

C. Ophus, Microscopy and Microanalysis 25, 563 (2019).
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1. 4D-STEM: In situ Experiment – Complex Structural Analysis

Gadolinium Titanate
• Composition: Gd2Ti2O7

• Single crystal
• Pyrochlore structure
• 190 keV helium ions 
• Nominal fluence of 1017 ions/ cm2
• Sample amorphized to a depth of ~1 µm
• He bubbles also present

He+ irradiation
at IBML

Ref: B. Savitzky et al., Microscopy and Microanalysis (2021).
LANL Collaborators: M. Janish, B. Derby
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1. 4D-STEM: In situ Experiment – Complex Structural Analysis

Gadolinium Titanate in situ 
Annealing

Ref: B. Savitzky et al., Microscopy and Microanalysis (2021).
LANL Collaborators: M. Janish, B. Derby
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1. 4D-STEM: In situ Experiment – Complex Structural Analysis

Gadolinium Titanate 4D-STEM
experiment
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Ref: B. Savitzky et al., Microscopy and Microanalysis (2021).
LANL Collaborators: M. Janish, B. Derby
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1. 4D-STEM: In situ Experiment – Complex Structural Analysis

Gadolinium Titanate 4D-STEM
experiment

epitactic fluorite mixed polycrystalline fluorite mixed

single crystal 
pyrochlore amorphous

Ref: B. Savitzky et al., Microscopy and Microanalysis (2021).
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1. 4D-STEM: Data Analysis – Classification and Segmentation

Amorphous

Polycrystalline

Classification applied 
to the GTO sample:

200 nm

General classification is performed by 
disc registration and Bragg peak 
position classification. Implementation 
of full orientation mapping is underway. 

Ref: B. Savitzky et al., Microscopy and Microanalysis (2021).

Single crystal

Decreased cation ordering
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FIB Foil

1. 4D-STEM: In situ Experiment – Tensile Testing
• In situ tensile holder allows uniaxial 

tension to be applied to a TEM sample
• Prior characterization via electron back 

scatter diffraction (EBSD) allows specified 
tensile directions to be selected

• FIB sample prep ensures targeted 
orientation(s) are in the electron 
transparent region

• Hoping/expecting to observe twin 
formation in one or both grains
− Primary goal was to capture the strain-field 

surrounding the twin tip before it interacts 
with a boundary

Foil geometry–
Grain 2 will be 
in c-axis tension

15 um
 

15 um 

~1
30

 

nm

Collaborators: H. Vo, R. McCabe
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• Cross-, phase-, or hybrid-correlation used to measure shifts in 
Bragg peaks to sub-pixel precision; patterned probes used to 
increase precision of Bragg peak localization

• Strain maps computed by comparing location of Bragg peaks at 
each real-space pixel to reference pattern

!𝒈tension!𝒈comp!𝒈ref

Real Space

Recip. Space

1. 4D-STEM: Data Analysis – Strain Mapping

ℇ =
#𝒈ref – #𝒈strain
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1. 4D-STEM: Data Cube Analysis – Virtual Detectors
• Fe–Al–Ni–Cr alloy

− Matrix: BCC
− Precipitates: 

§ Coherent B2 NiAl
§ Coherent Fe23Zr6

• Work in real-space and 
extract reciprocal space 
data or vice/versa

• Virtual apertures are 
infinitely configurable
− Arbitrary shaped virtual 

detectors possible
− Extracted real-space images 

update in real-time

Navigate in real-space: 
extract diffraction patterns
• Rapid identification of 

several types of 
precipitates

Ref: C. Gammer et al., Ultramicroscopy 15, 1 (2015).

Navigate in reciprocal-space: 
Extract bright/dark-field images
• Readily generate statistics 

on various phase volume 
fractions
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• Specially constructed condenser 
aperture used to generate a circular 
array of electron beams

• Optics setup to focus all beams to 
single point on the sample

• Off-axis beams are able to access 
required HOLZ information

1. 4D-STEM: Many Other Applications in Development

Kübel Group, Karlsruhe Institute of Technology

Multi-beam ACOM

X. Hong, Microscopy & Microanalysis  27, 129 
(2020).

X

Y

Z

STEM DPC

• Differential phase contrast measures 
deviations in position of center of 
mass of un-diffracted disc. 

• Reconstruct sample’s electrostatic or 
magnetic fields based on the 
displacement vector at each location 
in real-space

Electron Ptychography

• Coherent diffraction imaging method 
enables super-resolution

• Demonstrated resolution of ~0.2 Å, 
resolution limited by vibration of 
atoms, not by optics

• Limited to samples <30 nm thick

2 Å

Z. Chen, Science 372, 826 (2021).
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1. 4D-STEM: Technique’s Current Status at the EML
• Status: Ready for use

− Hardware fully integrated with the Titan S/TEM
− Several users already trained and collecting datasets each week

• Challenges: Significant, but mostly manageable
− Datasets can be 10’s – 100’s of GBs
− Processing requires efficiently coded software running on computers with significant 

computational and memory resources
− Code for very limited types of analyses available at the moment

• Prospects for future development: Excellent
− Datasets contain far more information than current analysis codes are able to 

efficiently extract
− Dynamical diffraction datasets require complex considerations, but contain a massive 

wealth of information
− Multi-beam ACOM collaboration with NCEM just getting going, hope to have beta-

implementation operational within 1 calendar year
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2. TEM: STEM-XEDS 

• Scanned transmission electron probe
• 300 kV primary electrons interact with 

sample to produce x-rays with a spectrum 
of wavelengths/energies

• X-ray energy-dispersive spectroscopy 
(XEDS) analyzes the energies of these 
x-rays and correlates them back to 
electronic structures characteristic of each 
element
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• XEDS detector upgraded from 30 mm2

to 70 mm2 active-area sensor
• Collection angle has gone from <0.1 sr

to >0.45 sr collection angle
• >200 kcps throughput

− High-quality mapping now possible in short 
time-frames (5-20 minutes)

• Spatial resolution limits in TEM 
determined by optics (not beam 
broadening)
− Titan limited to 1.36Å at the extreme, in 

practice 1 nm is easy.

2. XEDS: New Silicon-Drift Detector on Titan

• Sample: 
− Approximately equiatomic

Fe-Mn-Cr-Ni HEA 
− Phase segregated due to 

400 DPA irradiation

HEA sample courtesy of J. Gigax

AlGaAs Image: ThermoFisher Scientific
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2. XEDS: Technique’s Current Status at the EML
• Status: Ready for use

− Hardware fully integrated with the Titan S/TEM

• Challenges: Minor
− Certain combinations of elements have spectral overlaps that can be challenging to 

resolve, an inherent limitation of XEDS
− Highly accurate quantification requires use of known standards for proper calibration
− Very high-quality, large-area maps require long mapping times

§ Unfortunately the room’s temperature stability is currently the limiting factor

• Prospects for future development: Mature technology, usability improvements 
expected in software
− Possibility of implementing Zeta-Factor-based quantification for improved standardless 

quantification
− Ideally, EML would have database of standards available for common compounds to 

improve quantification results for user-base
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3. Micromachining 

• Positively charged ions are focused with 
electro-magnetic lenses and steered 
across the sample surface

• Ions locally sputter wherever they impinge
− Low beam currents used for imaging
− High beam currents used for directed 

material removal

• Traditional FIB: Ga+ ions, beam current 
maxes out around 65 nA

• Plasma FIB: Xe+ ions, maximum beam 
current on EML instrumentation 2.5 µA

100 µm
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• PFIB Ion beam currents of 
up to 2.5 µA greatly 
accelerate bulk material 
removal
− Approximately 40 times 

faster than Ga+ FIB

• In this video: 1 µA beam 
cleanly cuts bulk Ti
− Minimal clean-up required

• 100 x 100 x 100 µm3 cube 
fabricated in <4 hours

3. Micromachining: Rapid prep of large samples for 3D

Ti Cube for 3D EBSDCollaborators: R. McCabe
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• Readily fabricate/modify 
test apparatus geometries 
for each experiment

• W blank cut out using 
CINT’s FemtoScribe
capability

• PFIB used for finer, 
cleaner finishing

3. Micromachining: in situ micro-mechanical testing

W Gripper FabricationCollaborators: R. McCabe, 
Y. Zhang, N. Li, J. Gigax
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• Readily adapt test 
apparatus geometries to 
suit each experiment

• Rapid fabrication of meso-
scale samples for 
mechanical testing

3. Micromachining: in situ micro-mechanical testing

CuNb Tensile Sample FabricationCollaborators: R. McCabe, 
Y. Zhang, N. Li, J. Gigax
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• Readily adapt test 
geometries to customize 
experiment

• Rapid fabrication of meso-
scale samples for 
mechanical testing

• Conduct testing in situ

3. Micromachining: in situ micro-mechanical testing

Sample etched 
with Xe+ beam 
prior to experiment 
to reveal grains 

Data courtesy of iMIDAS project 
[J. Gigax, N. Li, S. Fensin]

Sped up ~50x
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• Readily adapt test 
geometries to customize 
experiment

• Rapid fabrication of meso-
scale samples for 
mechanical testing

• Conduct testing in situ
− Integrate analytical 

(e.g. EBSD) capabilities 
while testing

− Entire process is in situ, 
air-sensitive samples are 
not a problem

3. Micromachining: in situ micro-mechanical testing

Formation of slip 
bands readily 
observable

Data courtesy of iMIDAS project 
[J. Gigax, N. Li, S. Fensin]

Sped up 20x
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3. Micromachining: Technique’s Current Status at the EML
• Status: Almost ready for use

− PFIB fully installed, most bugs worked out (very slow Xe gas leak being localized)

• Challenges: Minor?
− In development phase of procedures for EML users, a few challenges have arisen but 

these are anticipated to be solvable in the near future
− As always, in situ experiments require careful setup and data collection

• Prospects for future development: Excellent
− LANL is ahead of the curve (though not leading, yet)
− There is a large amount of materials science to be done between the Ga+ FIB and the 

bulk sample regimes
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4. PFIB: 3D Datasets 

• Serial cross sectioning conducted by 
carefully milling away slices of a controlled 
thickness followed by the collection of 
secondary electron images and/or other 
signals of interest

• Datasets are reconstructed into 3D data-
cubes that are directly interpretable
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• Dataset dimensions: ~30 x 25 x 85 µm
• Collected on Ga+ FIB over ~24 hours
• Manually segmented over >40 hours (Thanks COVID-19!)

4. 3D Datasets: Serial Cross-Sectional Imaging

Collaborators: E. Tegtmeier, 
A. Richards



269/2/21

4. 3D Datasets: Serial Cross-Sectional Imaging

• Dataset dimensions: ~300 x 250 x 300 µm
• Collected on Xe+ FIB over ~28 hours
• Machine-learning based segmentation underway

Collaborators: E. Tegtmeier, 
A. Richards
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S&V Videos of PC samples (size comparison)

Ga+ FIB, 24 hours Xe+ FIB, 29 hours

4. 3D Datasets: Serial Cross-Sectional Imaging

• PFIB investigates > 350x the volume in approximately the same amount of time
• Manual segmentation does not scale, ML required
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4. 3D Datasets: Imaging + XEDS Mapping

• Sample: Stainless steel
− Accelerated corrosion 

conducted with exposure 
to Cl gas

• Collection of XEDS maps, 
coupled with imaging 
enables a more complete 
understanding of spatial 
relationship between 
various phases

Data courtesy of E. Tegtmeier
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4. 3D Datasets: 3D-EBSD 

• 3D EBSD enables the study of 
relationships between grains in far 
greater detail than any single slice 
through a given material

• Sample: Titanium
− 100 x 100 x 100 um3

• Data collection details: 
− FIB slice time ~75 seconds

− EBSD collection ~100 seconds

− 250 nm cubic voxels (from 250 nm thick 
slices)

− Sample prep to 3D EBSD data ~24 hours

Collaborators: R. McCabe
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4. 3D Datasets: Technique’s Current Status at the EML
• Status: Almost ready for use

− PFIB fully installed, most bugs worked out (very slow Xe gas leak being localized)

• Challenges: Minor?
− In development phase of procedures for EML users, a few challenges have arisen but 

these are anticipated to be solvable in the near future
− Optimization of data collection procedures underway, small gains per-frame save many 

hours over the entire process

• Prospects for future development: Excellent
− LANL is ahead of the curve (though not leading, yet) 
− Three dimensional analyses are far more complete than single-frames
− These datasets are useful inputs for modelling efforts at various length-scales
− Prospects for machine-learning/AI based data analyses are quite positive and these 

techniques are absolutely needed to aid in processing the large volumes of data 
generated
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5. SEM: Transmission Kikuchi 
Diffraction (TKD) 
• Scanned electron probe is transmitted 

through a thinned sample
• Inelastically scattered electrons are 

diffracted off of lattice and form Kikuchi 
patterns in the far-field

• Spatial resolutions of about 5 nm (EBSD 
resolution ~150 nm) 
− Crystallographic information is from near the 

exit-surface only, not averaged through the 
sample’s thickness 

500 nm
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TKD setup inside the SEM

5. TKD: Experimental Configuration

• Samples required to be transparent 
at SEM beam energies (10 – 30 kV)
− Must be >500 nm thick (actual 

requirement depends on through-
thickness average atomic number)

− Thinner samples yield higher spatial 
resolution

• Samples are commonly “back-tilted” 
20° to bring more diffraction onto 
EBSD camera

• Short working distances are used, 
placing sample above the top of the 
EBSD camera

Ref: P. Trimby, Ultramicroscopy 120, 16 (2012).
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FIB Pt cap

15 µm

5 µm

5. TKD: Sample Preparation

• Site-specific TKD sample prep:
− FIB used to pull lamella from selected 

region of bulk sample

− Sample mounted on TEM half-grid for 
TKD characterization in the SEM

− 2 kV final polish greatly improves 
quality of TKD patterns

• Non-site-specific TKD sample prep:
− Dimple-grinding and ion-milling

− Twin-jet electropolishing

− Wedge-polishing

3 mm
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5. TKD: Data Post-Processing

• TKD data is harder to process using 
the traditional EBSD pipeline; local 
variations in sample thickness can 
strongly affect the background 
− Post-processing of TKD patterns 

making use of advanced background 
models and other image processing 
techniques yield higher quality 
orientation data

− Combining and averaging each 
pattern with its first-nearest-neighbors 
yields a 1/sqrt(7) improvement in 
signal to noise (i.e. EDAX’s NPAR)

Adv BG
+ NPAR

Raw

Adv BG
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5. TKD: Post-processed Experimental Results

• Sample: Cu-Nb, 140 nm nominal layer 
thickness

• IPFs from static background 
subtraction (left) vs. advanced 
background processing coupled with 
nearest-neighbor averaging (right)
− 38% improvement in the number of 

points successfully indexed

Collaborators: R. McCabe, Y. Zhang
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5. TKD: Technique’s Current Status at the EML
• Status: Ready for use

− Several EML users are already collecting high-quality TKD data

• Challenges: Minor
− Data processing requires above average computational resources
− Large datasets are common (10’s to 100’s of GBs)

• Prospects for future development: Good
− Reasonably mature new technique, based on tried-and-true EBSD principles
− Correlative workflows are improving and aiding researchers to efficiently bridge the 

SEM and TEM length-scales
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6. SEM: HR-EBSD

• High-resolution electron backscatter 
diffraction (HR-EBSD) is a technique for 
mapping localized lattice distortions and 
misorientations in crystalline materials

• ”High-resolution” refers to the angular 
resolution to which the crystal structure 
can be accurately indexed

Data courtesy of Y. Zhang
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6. HR-EBSD: Conventional EBSD vs. High Res.

• Convention EBSD
− Stage tilted +70°, towards EBSD camera

− Camera setup for high-speed capture: low 
exposure, high-gain, single frame, 
binned 4x4

− Data processing is done via Hough 
transform, able to process on the fly
§ Data reduction accomplished by only saving 

the location of Hough peaks rather than full 
pattern

− Results:
§ Absolute orientation precision: ±2°

§ Misorientation precision: ±0.5°

• High-Resolution EBSD
− Stage titled +70°, towards EBSD camera

− Camera setup for maximum SNR: low 
gain, long exposure, frame averaging, 
un-binned 

− Data processing is conducted by cross-
correlating experimentally recorded 
patterns versus reference patterns
§ Reference patterns from un-strained region or 

computed from known crystallography

− Results: 
§ Absolute orientation: computed conventionally

§ Misorientation precision: ±0.0006°
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6. HR-EBSD: Cross-Correlation Processing 

• Computed patterns provide ground-truth, 
experimentally recorded reference patterns are 
subject to SNR limits as well any residual 
strain in the sample

• Cross-correlation used to measure shifts in 
both zone axis location as well as rotational 
orientation with sub-pixel precision

• The measured shifts are directly, geometrically 
linked to strains and lattice rotations 

• Deviations in interplanar angles and lattice 
orientations subsequently measured precisely 
and accurately

Ref: T. Britton et al., IOP Conf.: Mat. Sci. & Eng. 304 (2018).
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Ref: A. Wilkinson & D. Randman, Phil. Mag. 90 1159 (2010).

4 µm10 µm
http://www.hrebsd.com/

Conv. 
EBSD

High Res.
EBSD

Kernel Average 
Misorientation Map Lattice Rotation Fields

6. HR-EBSD: Results of Conventional EBSD vs. High Res.
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6. HR-EBSD: Technique’s Current Status at the EML
• Status: Just getting started

− Prototype datasets have been collected, these have demonstrated the limitations of 
current EML hardware

• Challenges: Moderate
− Data processing requires above average computational resources
− Large datasets are common (10’s to 100’s of GBs)
− EML’s current EBSD cameras are not well suited to HR collection needs

• Prospects for future development: Good
− New EBSD camera well suited to the technique has been ordered
− The leading commercial HR-EBSD data processing solution, Cross-Court, is already 

running in the EML and available for users
− Lack of results, to date, is primarily due to lack of suitable data 
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Thank You

• And many thanks to collaborators:
– Rod McCabe
– Ben Morrow
– Matt Janish
– Ben Derby
– Hi Vo
– Michael Pettes
– Alejandra Londoño-Calderon

– Laurent Capolungo
– Terry Holesinger
– Eric Tegtmeier
– Andrew Richards
– Yifan Zhang
– Nan Li
– Many more….
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Backup Slides
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Shamelessly stolen from Colin Ophus, NCEM


